相关文章

生物质的燃烧特性及积灰结渣特性研究

  本文基于25kw的高温一维炉系统,对十种不同的生物质燃料的燃烧特性及结渣特性进行分析。研究发现,生物质燃烧着火点以及最大失重温度基本低于一般的煤,且积灰速率与燃料的最大失重速率有很大关系。而通常情况下针对煤燃烧提出的熔渣指数(SI)和其补充指数硫指数(SIs),在针对生物质燃烧积灰的模型中实验符合程度并不理想。相比之下,新提出的氯指数,在本研究中表现出来更好的规律,能更好的预测生物质积灰特点。

  2009年12月26日国家修正的《可再生能源法》明确提出:国家鼓励清洁、高效地开发利用生物质燃料,鼓励发展能源作物。《可再生能源中长期发展规划》也确定了到2020年全国生物质固体成型燃料年利用量达到5000万吨、生物质发电总装机容量要达到2000万kw,年替代2800万吨标准煤。国家总局、国家发展和改革委员会下发的环发[2006]82号文件《关于加强生物质发电项目环境影响评价管理工作的通知》中规定:“国家鼓励对常规火电项目进行掺烧生物质的技术改造,当生物质掺烧量按照热值换算低于80%时,应按照常规火电项目进行管理。”

  此时生物质的燃烧特性对于大规模锅炉就显得极为重要,了解和利用生物质的燃烧特性对于生物质与煤的混烧发电有着至关重要的作用。而生物质作为燃料同时也面临着新的挑战:生物质燃料中的碱金属含量很大,燃烧时很容易在炉膛内部产生积灰,积灰会增大热阻,减小锅炉效率,造成经济损失的同时,大热阻也会产生安全隐患;而碱金属和酸性离子在高温下也会腐蚀炉体表面导致重大后果。这些问题不得到克服,生物质的混烧发展就难以继续。

  到目前为止,针对生物质的积灰的研究有很多,一些文献中采用熔渣指数构建模型进行预测还有一些运用灰熔点温度进行预测。随着计算流体力学(CFD)的发展,CFD已经成为了生物质积灰预测系统的重要组成部分,但是在建立模型的过程中,存在着大量的估计以及经验公式作为计算模型,而以往的研究多是以单独的煤或者大量的煤和少量的生物质的混烧作为模型背景的,随着以后可能出现的生物质燃料比例的上升乃至单独生物质燃烧的锅炉,煤占主导的燃烧模型会出现比较大的偏差,那么对生物质燃烧以及结渣特性的研究作为CFD模型的参数补充就显得尤为重要。在生物质燃料的发展中,寻找生物质燃烧积灰过程中的结渣特性的规律迫在眉睫。

  本实验对常见并具有代表性的十种生物质进行单独燃烧,观察和分析它们在燃烧过程中的特性以及结渣现象,并对燃烧现象进行TGA分析,再以熔渣指数为基础,加入对其他元素(硫元素和氯元素)的考虑并对结渣现象进行分析,对十种生物质积灰速率进行估计以及拟合,希望找到一种对于生物质燃烧和积灰结渣特性有效而相对准确的预测体系,一方面为大型利用生物质的发电方式提供生物质燃烧特性,另一方面也为今后CFD模型的数据补充提供生物质相关的参数。

  2 实验介绍

  2.1 实验材料

  本项目的研究共收集了十种代表性的燃料,分别为小麦秆、水稻秆、玉米秆、大豆秆、棉花秆、油菜秆、玉米芯、稻壳、树皮、木片十种生物质。从大的类型上,这十种生物质除了木片和树皮属于木本植物之外,其他的都是草本植物。在实验中需要用不同的方法进行粉碎,对十种生物质秸秆都进行了磨碎(磨碎粒度200-300um),以进行燃烧特性、一维炉积灰实验研究。

  表1分别给出十种生物质燃料的燃料特性分析(按设计燃料35.5%水分折算),从表中可以看出,十种生物质燃料挥发份含量很高,在41.86%-52.68%之间,而固定碳含量偏低,固定碳含量在8.72%-13.51%之间;生物质燃料的发热量普遍不高,十种生物质的低位发热量范围在9.41-11.45MJ/kg,不到煤的一半;灰分含量总体水平不高,但十种生物质差别很大,灰分最低的玉米芯仅有1.12%的灰分,而稻壳的灰分含量达到了12.26%,差别非常明显。

  表2中给出的是这是种生物质结焦的灰化学成分以及其含量,十种生物质的灰成分区别较大,重要积灰成分等含量有着明显的差异。

  2.2 实验设备

  实验在清华大学一台25kw的高温一维炉实验系统上进行,如图1所示,煤粉或其他燃料可以通过一台1-8kg/h给粉量刷式微量称重螺旋给料机进行实时定量给料,由一次风气力输送送到多燃料组合燃烧器的一次风入口。多燃料组合燃烧器的配风由一次风和二次风构成,二次风经过电加热器时,其温度被加热到400℃后,通过燃烧器出口旋流片加旋后送入到一维下行炉中,一次风和二次风在下行炉燃烧器出口区域形成了一段回流区域,增加烟气的返混,以增强燃烧器出口燃料的加热,以及实现燃料和空气的快速混合。燃烧在直径为150mm、高3.2m的下行炉膛中进行,燃尽后的烟气经过烟气冷却器、布袋除尘器后排入到大气中。

  本研究中,选用刮板式给料机(MFOV-1VO)为一维炉系统输送生物质燃料,输送速度调节范围是0.1-20cc/min。使用的高温积灰采样系统为清华大学自行设计具有自主专利的积灰取样系统,除了能够进行实验室的积灰实验外,也可以用于实际锅炉中的积灰采集实验。其中采样管外径根据采样当地的流场参数确定,保证积灰采样时流场条件贴近实际情况。

  本项目考察生物质烧结积灰的影响,选择采样管表面温度: 600℃。当一维炉实验系统达到预定工况并稳定后,火焰区温度约为1150℃,采样处烟气温度降至750℃左右,采样时间为60min,各工况生物质燃料输送速度均设置600g/h。

  样品的热重分析实验采用德国NETSCH公司的STA-409 C/3F热重分析仪,该仪器可以同时进行试样的TG和DSC/DTA分析。本次测试采用空气作为环境气体,按照10℃/min的升温速率由室温升温到1000℃,测量燃烧失重曲线。

  3 实验结果分析

  事实上,不同生物质的灰含量都有很大差别,而实验积灰温度为600℃,各种物质在60min的积灰量在表3中给出。本文分别从燃料燃烧过程中的失重速率以及燃料自身的结渣特性分析生物质燃烧过程中的积灰情况。

  3.1 生物质燃烧特性的TGA分析

  通过TGA分析可以得到生物质的热稳定性和组分特点,在本次在燃烧特性实验中,生物质的燃烧特性以TG、DTG燃烧分布曲线来反映,样品的失重过程可以假设分成3个阶段:①由于样品中的吸附水和挥发气体析出,温度在200℃以下;②生物质样品中的半纤维素、纤维素以及木质素的热解和挥发分的燃烧反应,温度在200―350℃;③生物质中剩余木质素热解以及焦炭燃烧,温度在350―600℃。其特性参数有以下:

  (1)着火温度Ti(℃)。着火温度是燃料着火性能的主要指标,着火温度越低,表明燃料的着火性能越好。

  (2)最大失重速率(最大燃烧速率)(dw/dt)max,%/min,DTG曲线上的峰值点所对应的反应过程中最快的反应速率即是最大燃烧速率,(dw/dt)max越大,挥发分释放得越强烈。

  (3)Tmax最大失重速率所对应的温度,℃。Tmax越低,则挥发分的释放高峰出现得越早,越集中,对着火越有利;反之,则越不利于着火。

  实验中的十种生物质的TG-DTG曲线中的各个样品的主要燃烧特性如表4所示。与煤的着火温度相比,生物质的着火温度很低,由表中可以看出,十种生物质的着火温度在220℃-286℃之间,豆杆的着火温度最低,为220℃,着火温度最高的树皮也仅仅286℃;在从最大失重速率及其对应的温度来看,十种生物质的最大失重速率发生在269℃-335℃之间,相对来说十种生物质的Tmax都比较低,玉米芯最大失重速率对应的温度最低,为269℃,树皮最大失重速率对应的温度最高,为335℃;从开始着火到最大失重速率出现,十种生物质的温度浮动都很小,在30℃-72℃之间,说明生物质会迅速析出挥发份,迅速燃烧。

  生物质由于其成分的原因,无论在着火温度,还是最大失重温度上跟煤都有较大区别(煤着火温度350―450℃左右,最大失重温度在500℃左右),由于其着火温度和最大失重温度低,是着火性能非常好燃料;另一方面,也说明煤和生物质的燃烧特性有所区别,用煤的燃烧参数代替生物质是不够准确的。

  本实验中的积灰速率和燃料燃烧最大失重速率关系如图2所示。由于趋势明显不符,去掉了稻杆的数据(最大失重速率11.8(dw/dt)max(%/min),积灰速度9.12(mg/min)),可能由于测量中对其最大失重速率的测量计算存在偏差或者植物自身的特殊属性。在其余的9个数据中当(dw/dt)max处在8(%/min)左右的时候生物质的积灰速率达到最大,当在8(%/min)左右,无论增大或减小,都会使得其积灰速率有所减小。

  一方面,积灰的形成,初期机制是凝结成核,包括气相成灰物质的冷凝以及较细小颗粒的沉积,当燃料失重速率小时(小于8(%/min)),成灰物质会形成以K为代表的碱金属涂层,增大采样管的表面粘性,积灰速率会随着燃料的失重增快而增大;如果燃料失重速率大(大于8(%/min)),含有Si,Al等元素的飞灰也会很快析出,并且被捕集,与容易析出的高反应性碱金属共同构成采样管外壁,使得外层采样管的粘性下降,对飞灰的捕集能力下降,此时即使燃料失重速率变大,也会使得积灰速率下降;如果积灰速率很大,采样管表面热阻也会在短时间内大大增加,温度升高,熔融态的成灰物质比例增多,表面粘附力又一次增强,但伴随积灰增厚,外层积灰更容易在大速率产生的飞灰的冲刷下脱落,当二者达到平衡时,成为积灰的“饱和”态,形成稳定的积灰。

  另一方面,积灰的形成不仅和燃料的失重速率相关,和燃料的灰成分特性也有很大的关系。不同的灰成分的燃料会表现出来不同的特性,其积灰速率也会受到很大影响。这一点在文章的后面给予说明。

  3.2 生物质的熔渣指数分析

  3.2.1 熔渣指数

  很多文献中都提到过熔渣指数Slagging Index,用来预测生物质或煤的结焦特性,基本的理念是基于碱性氧化物和酸性氧化物的比值作为基础,然后进行分析,一般的公式如下:

  有些时候这个指数也会添加一些其他的因素作为修正。但是,由于添加的修正因素并不会影响大的趋势,在众多涉及这个参数的文献中,都提到,在SI位于0.75-2.0这个范围的时候结渣强度会非常大,而小于0.75或是大于2.0范围都会使结渣强度降低。

  而在本实验中的熔渣指数和积灰速率的关系正如图3所示,由于油菜杆和豆杆的灰成分中的碱性氧化物含量非常大,而等酸性氧化物的含量很低,导致SI值相比于其他实验组大了很多,在图中可以看到当SI>1后的几个点已经趋于稳定在2mg/min左右的积灰速率上。

  可以发现,积灰速率在SI小于0.6的时候是较高的,并且在0.2,0.4左右出现两个峰值,在SI大于0.6后,虽然略有波动,但相对保持平稳状态,积灰速率也保持在2mg/min左右小幅波动。

  大多数文献中所体现的0.75-2.0的值域,并没有在本次实验中得到很好地体现。事实上,整个SI参数和值域的提出都是针对煤在燃烧过程中的特性提出的,虽然生物质和煤的结构类似,燃料特性和积灰成分也有一些相似之处,但相较之下还是有很多不同点。生物质中通常有较高量的K,P,Ca元素,但是Fe,Ti元素都低于常见的煤。此外,生物质中的碱金属元素通常以离子或有机物的形式存在,而煤中通常是以矿物质存在。而在燃烧过程中,离子和有机元素相比于矿物质会更加不稳定一些,非常容易蒸发、冷凝然后形成沉积,而矿物质会更难一些。

  但考虑到煤和生物质形成的沉积物的成分大致一致,都作为生物燃料,它们的相似性也是存在的。考虑到上述离子和矿物质形态的碱金属元素的迁移难易问题,由于生物质中的碱金属以离子态和有机物态存在,更容易迁出,生物质的积灰速度和SI曲线相比于煤也应该会向左偏移。

  相比于煤SI在0.75-2.0之间的积灰速率最大,生物质SI可能会在0.6以内就出现积灰速率的迅速增大。但是由于SI在0.6以内的试验点数目所限,规律还不是非常明确。

  3.2.2 硫指数和氯指数的考虑

  一些文献中也提到了在结渣过程中,特定元素对积灰的影响非常大,一些研究中也引入了硫指数这个概念[10],用熔渣指数乘以硫元素在干燃料中的比例,得到一个新的指数――硫指数。即

  SIs=SI*

  不过,考虑到氯元素在生物质燃烧过程中对碱金属的蒸发起到的重要作用,本文中也引入一个新的指数,用熔渣指数乘以氯元素在干燃料中的比例,得到一个新的指数――氯指数,即:

  SICl=SI*

  式中分别表示硫元素和氯元素在干燃料中的比例。

  如前文所述,去掉大的指数对图表比例的影响,积灰速度和硫指数的关系如图4所示,而积灰速度和氯指数的关系如图5所示。

  S作为煤燃烧结焦的重要元素,在生物质燃烧积灰的图样中并没有体现出来很好的特性,但与最初的SI指数相比,还是保持了双峰的特点,并且排除的由于横坐标值过大的点,它们的积灰速率基本上在2mg/min,这也说明了在硫指数比较大的时候,积灰速率也趋于平稳,这个和SI曲线是一致的。但整个图像比较散乱,规律性不好,这也是因为S元素并不是生物质燃烧积灰的最重要元素。

  相比之下,Cl作为生物质燃烧积灰的重要元素,图像的特点非常明显。与其它指数不同,图像中的两个最大值点(积灰速率10mg/min左右的点)在氯指数的图中是连续的两个点,中间没有大幅的下降的点,构成了一个比较明显的“峰”,且在这个大“峰”的右侧,积灰速率都有明显的下降,并趋于平缓;而在“峰”的左侧,积灰速率虽然有所波动,但是也是在2mg/min上下波动,而且区别较大的两个点(积灰速率在4mg/min)是树皮和木片,这两种材料组成非常接近,并且是明显的木本生物,而其他的实验组多为草本生物质,导致了这个实验规律的略微差异。

  由此可见,Cl元素作为生物质燃烧积灰的重要元素,在积灰结渣中起着重要的作用。

  首先,是它的传输作用,在生物质燃烧时,氯元素有助于碱金属元素从燃料颗粒内部迁移到颗粒表面与其它物质发生化学反应;

  第二,氯元素有助于碱金属元素的气化,它可以与碱金属硅酸盐反应生成气态碱金属氯化物,比如,Cl在焦炭表面与K发生反应生成KCl,而后KCl和含氧的官能团进一步发生发应,导致Cl以HCl的形式进入烟气。当Cl与碱金属形成气态或者形成HCl的时候,在燃料粒子的周围形成了一个气膜,改变了燃料的传热性能,一方面增大了热传导的热阻,使得周围的高温空气换热变得困难,另一方面,形成的气态KCl、HCl在周围形成了一个“遮热板”的涂层,使辐射传热过程增加了阻力,辐射换热量减小,此时,热量不是由炉壁直接传给燃料表面,而是由炉壁先辐射给周围的Cl化物膜,再由这层膜辐射给燃料粒子。在增加了这个“遮热板”后,使得换热量受到一定影响。由于这两方面的共同影响,整个燃料颗粒的换热减弱,吸收的热量减小,燃烧不充分,形成一部分熔融的堆积,以致形成沉积。

  而且随着碱金属元素气化程度增加,形成的气膜加厚,致使整个沉淀物和燃料颗粒的温度下降,而固体和液体的粘性随着温度的降低而增加,即沉积物数量和其粘性也增加。随着沉积物的粘性增加,导致其撞击效率一定的基础上管壁的捕集效率增加,使得沉积速度增加,沉积总量增大。

  但是随着氯指数的比例进一步增大,一方面,由于结渣指数在之前图像中的特性,会使得整个积灰的总量下降;另一方面,由于氯元素在这里起到的是一个加强效果的作用,随着氯自身的比例增加,会使结渣成分的比例降低,也会使得积灰的总量受到影响而下降。

  对本次实验的生物质而言,当氯指数在0.05-0.1之间的时候,积灰速率很大,小于0.05或者大于0.1的时候,都会使积灰速率减小并趋于平稳(对多数草本生物质),趋向于2mg/min。

  4 结语

  研究发现,生物质同煤相比,着火点很低,而且最大失重温度都集中在300℃左右,且从着火点到最大温度的浮动很小,只有30-70℃左右,综合来看着火性能非常好,且明显异于煤。由于燃料特性和积灰机理,在实验燃料失重速率达到8(%/min)左右时,积灰的速率达到峰值。

  一些文献中提到的熔渣指数(SI)和其补充指数硫指数(SIs),在对煤的燃烧判断和积灰预测中可以体现出不错的效果,但在针对生物质燃烧积灰的模型中实验符合程度并不理想。新提出的氯指数,对生物质的燃烧特性和积灰特性的说明符合上做的更好,实验表明,当氯指数在0.05-0.1之间的时候,积灰速率增长很大,小于0.05或者大于0.1的时候,都会使积灰速率减小并趋于平稳,趋向于2mg/min。

  实验作为生物质的特性研究,系统地对不同生物质的燃烧和积灰特性做了分析,对煤与生物质的混烧配比以及生物质的混合燃烧起到了一个预测和指引的作用,为工业发电中煤与生物质混烧的减少积灰提供实验依据。